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Introduction

I The econometric literature on climate change impacts has used very
simplistic characterization of climate.
I Mostly temperature and precipitations.
I Very limited work on extreme events.

I Partial representation of climate impacts.
I Possibility of omitted-variables as climate variable are correlated.

I In both cross-section and panel methods with fixed effects.
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Examples

I Heat waves are not random.
I Omission of humidity, wind and other variables biases temperature

coefficients (Zhang et al., 2017).

Figure 1: Extreme Heat Days



Characterizing Climate

I In previous work I have used observational data on extreme weather
events
I No significant effect on agricultural land values.
I Significant effects on crop yields.

I In this paper I use a large set of raw climate variables to study
agricultural land values.

I Goals
I Better characterization of climate-agricultural productivity

relationship.
I Exploratory analysis of “big data” methods to climate change

research.
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OLS Regression

I Standard pooled panel Ricardian regression
I Log of land value per hectare in county i at time t regressed on

climate and other control variables:

yit = β0 + βCCi + βGGi + βZZit +
T∑

t=1
dtYEAR +

S∑
s=1

dsSTATE + uit

I Ci: vector of climate variables;
I Gi: vector of geographic and soil characteristics;
I Zit: vector of time-varying socio-economic variables;
I dt: time dummies;
I ds: state dummies.



OLS with many variables

I If model is well-specified
I OLS estimates have low bias
I If n >> k OLS also has low variance.

I As k increases, OLS regression leads to overfitting, with high
variance and poor out-of-sample accuracy.
I A small change in the data used for the regression leads to a large

change in the coefficients.
I If k > n there is not a unique set of coefficient: the variance is

infinite.



Shrinkage Methods

I Some methods allow to constraint or shrink the estimated
coefficients with little increase in bias and large reductions in
variance.

I Some variables are irrelevant: variable selection.

I Subset selection
I Select a subset of the p predictors, then use LS.

I Shrinkage
I Use all p regressors, but irrelevant regressors are shrunken towards

zero, or to zero (variable selection).
I Dimension reduction

I Project p predictors into a M-dimensional subspace, where M < p.
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The Lasso

I Shrinkage and variable selection.
I The lasso coefficients β̂L

λ minimizes the quantity

N∑
i=1

yi − β0 −
k∑

j=1
βjxij

2

+ λ

k∑
j=1

|βj| = RSS + λ

k∑
j=1

|βj| .

I Intuition:
I Minimize RSS given constraint on coefficients.
I Variables that contribute little or nothing to explaining the

dependent variable are dropped.
I Relationship with LS

I With λ = 0: LS
I As λ increases, the model starts shrinking coefficient: variance

declines while bias increases.
I If λ is sufficiently large some coefficients are set to zero.
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Agricultural Data

I Agricultural data from US Census of Agriculture
I Socio-economic data from US Census Bureau and other sources

I As in Massetti, Mendelsohn and Chonabayashi (2016).
I Climate data from North American Regional Reanalysis

I 1979-2011 reanalysis data
I 3-hour time step
I 32 x 32 Km grid (average over counties)



Climate Variables

I Total Precipitation (kg/m2)

I Convective Available Potential
Energy (J/kg)

I Categorical Freezing Rain ([yes=1,
no=0])

I Categorical Snow ([yes=1, no=0])
I Downward Longwave Radiation Flux

(W/m2)

I Downward Shortwave Radiation Flux
(W/m2)

I High Level Cloud Cover (%)
I Storm Relative Helicity (m2/s2)

I Low Level Cloud Cover (%)
I Mid Level Cloud Cover (%)
I Mean Sea Level Pressure (ETA

model) (Pa)
I Precipitation Rate (kg/m2/s)

I Surface Pressure (Pa)
I Tropopause Pressure (Pa)
I Pressure Reduced to MSL (Pa)
I Relative Humidity (%)
I Snow Depth (m)
I Snow Cover (%)
I Soil Moisture Content (kg/m2)

I Specific Humidity (kg/kg)
I 2-m Temperature (◦C)
I Surface Temperature (◦C)
I Upward Longwave Radiation Flux

(W/m2)

I U-component of Storm Motion (m/s)
I Upward Shortwave Radiation Flux

(W/m2)

I Vertical Speed Shear (1/s)



Correlations

Y Temp Precip
Temperature 0.016
Precipitations 0.547 0.4
Convective Available Potential Energy 0.003 0.841 0.471
Categorical Freezing Rain 0.314 -0.481 0.098
Categorical Snow 0.004 -0.767 -0.28
Surface Pressure 0.431 0.465 0.628
Tropopause Pressure -0.019 -0.948 -0.41
Downward Longwave Radiation Flux 0.244 0.892 0.648
Storm Relative Helicity -0.198 -0.321 -0.213
Pressure Reduced to MSL 0.573 0.275 0.787
Relative Humidity 0.597 0.002 0.734
Snow Depth -0.076 -0.725 -0.357
Snow Cover -0.08 -0.74 -0.437
Upward Longwave Radiation Flux -0.068 0.991 0.302
U-component of Storm Motion 0.258 -0.722 -0.039
Vertical Speed Shear 0.534 -0.098 0.443



Climate Variables - CAPE

I CAPE - Convective Available Potential Energy
I An indicator of atmospheric instability, which makes it very valuable

in predicting severe weather.
I Extreme CAPE can result in explosive thunderstorm development.
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Storm Relative Elicity - SRH
I SRH - Storm Relative Elicity.

I A measure of the potential for cyclonic updraft rotation in
right-moving supercells.

I More than likely become a supercell and possibly spawn one or more
tornadoes.

I There is no clear threshold value for SRH when forecasting supercells.

Figure 2: SRH in Spring and Longitude.



Cloud Cover - Low, Middle and High Elevation

I Cloud Cover - Low, Middle and High Elevation.
I Correlated with precipitations (+) and temperature (-).
I Very strong regional patterns.
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Radiative Flux

I Radiative Flux:
I Short wave: diffuse reflection of incident shortwave radiation by the

underlying surface.
I Long wave (upward and downward): explains temperature inversion

and fog formation (enters independently and as difference).
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Mean Sea Level Pressure
I The mean sea level pressure (MSLP) is the average atmospheric

pressure at sea level.
I This is the atmospheric pressure normally given in weather reports.
I Pressure systems cause weather experienced locally.

I Low-pressure systems are associated with clouds and precipitation
that minimize temperature changes through the day.

I High-pressure systems normally associated with dry weather and
mostly clear skies with larger diurnal temperature changes.
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Importance of Additional Climate Variables in OLS

Marginal 95% CI Marginal 95% CI

Temperature (°C)

Winter ‐0.216 [ ‐0.272 , ‐0.161 ] 0.104 [ ‐0.01 , 0.218 ]

Spring 0.125 [ 0.068 , 0.182 ] ‐0.097 [ ‐0.26 , 0.065 ]

Summer ‐0.307 [ ‐0.356 , ‐0.259 ] ‐0.026 [ ‐0.22 , 0.168 ]

Fall 0.347 [ 0.27 , 0.424 ] 0.083 [ ‐0.099 , 0.265 ]

Annual ‐0.052 [ ‐0.085 , ‐0.019 ] 0.063 [ ‐0.01 , 0.137 ]

Precipitation (cm)

Winter 0.036 [ 0.01 , 0.063 ] 0.050 [ 0.009 , 0.09 ]

Spring 0.052 [ 0.019 , 0.084 ] 0.066 [ 0.023 , 0.109 ]

Summer ‐0.047 [ ‐0.069 , ‐0.025 ] ‐0.048 [ ‐0.077 , ‐0.018 ]

Fall ‐0.043 [ ‐0.071 , ‐0.016 ] ‐0.075 [ ‐0.125 , ‐0.024 ]

Annual ‐0.002 [ ‐0.023 , 0.018 ] ‐0.006 [ ‐0.044 , 0.031 ]

Climate Enhanced ModelStandard Model

Notes: Marginal effects at average temperature and precipitation east of the 100th meridian



OLS vs Lasso: Coefficients

Lasso

Coef Coef OLS Lasso

T win ‐0.034 ‐0.126 0.058 ‐0.011 Temperature Marginal (°C)

T win sq 0.003 0.000 0.007 0.003 Winter ‐0.023 ‐0.001

T spr 0.223 0.017 0.429 0.133 Spring ‐0.023 ‐0.084

T spr sq ‐0.009 ‐0.014 ‐0.004 ‐0.008 Summer ‐0.065 ‐‐

T sum ‐0.128 ‐0.442 0.186 Fall 0.167 0.134

T sum sq 0.001 ‐0.004 0.007

T aut 0.219 ‐0.037 0.474 0.134 Annual 0.057 0.048

T aut sq ‐0.002 ‐0.010 0.007

P win ‐0.022 ‐0.090 0.046

P win sq 0.005 0.001 0.008 0.003 Precipitation Marginal (cm)

P spr 0.229 0.106 0.352 0.192 Winter 0.041 0.048

P spr sq ‐0.008 ‐0.013 ‐0.002 ‐0.006 Spring 0.086 0.077

P sum ‐0.081 ‐0.162 ‐0.001 ‐0.074 Summer ‐0.044 ‐0.043

P sum sq 0.002 ‐0.001 0.005 0.002 Fall ‐0.094 ‐0.220

P aut ‐0.053 ‐0.168 0.062 ‐0.029

P aut sq 0.000 ‐0.006 0.006 ‐0.001 Annual ‐0.012 ‐0.139

95% CI

OLS



OLS vs Lasso: Out-of-sample Forecasting Accuracy

I 120 Random samples of 50% of counties to train the model
I Prediction on the remaining 50%
I Out-of-sample RMSE

Model Mean St. Dev. Min Max
OLS 0.275 0.024 0.2534 0.372
Lasso 0.268 0.014 0.2531 0.339
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Conclusions

I Omitted climate variables correlated with included climate variables
and land values.

I Complex modeling choices, many variables, interactions.
I Methods for selection of variables.
I Preliminary results suggest:

I Temperature and precipitation coefficients may be biased by omitted
climate variables.

I Lasso coefficients different from OLS coefficients.
I Lasso has lower out-of-sample forecasting RMSE than OLS.
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