Projects

/
What we do
/
Research projects

Filtering by: Earth System Modelling and Data Assimilation Division

ALIENA: ALIgning Efforts to control Non-indigenous species in the Adriatic sea

Non-indigenous species (NIS) pose a significant threat to biodiversity and ecosystems globally, ranking as the second most common cause of species extinctions. Particularly in the Adriatic Sea, a hub for fishing, tourism and maritime traffic, the introduction of NIS has the potential to exacerbate ecological and economic impacts. ALIENA aims at creating a shared knowledge base and collaborative monitoring system to protect biodiversity from NIS in the Adriatic Sea. Through joint monitoring and modeling efforts focused on these species, the project seeks to develop early warning solutions essential for effective marine management, biodiversity conservation, and public health protection. Additionally, it aims to improve shared protocols for NIS detection, monitoring, and management, while also increasing stakeholders’ awareness of NIS issues.


C-BLUES: Carbon sequestration in BLUe EcoSystems

C-BLUES will significantly advance knowledge and understanding of blue carbon ecosystems (BCEs) seagrasses, tidal marshes, mangroves, macroalgae, and macroalgae mariculture aiming to achieve three overarching objectives: 1) develop new scientific knowledge within BCEs to reduce scientific uncertainty and improve reporting of blue carbon under the United Nations Framework Convention on Climate Change (UNFCCC), 2) provide input to a possible revision of the 2013 IPCC Wetlands Supplement to increase inclusion of coastal wetlands in national greenhouse gas (GHG) inventories and reporting, 3) raise awareness and promote the role of blue carbon for delivering global climate policy commitments in collaboration with Chinese and other international partners.


C3S2_413 – Enhanced Operational Windstorm Service

This contract presents a continuation, a temporal extension, and an enhancement of the current C3S Windstorm Service. Leveraging the current Service structure, contractorss will temporally extend the detection and tracking of Pan-European potentially harmful windstorms associated with extratropical cyclones along the whole available period provided by the ECMWF ERA5 reanalysis dataset (1940-present).


CERISE: CopERnIcus climate change Service Evolution

The Copernicus Climate Change Service Evolution (CERISE) project aims to enhance the quality of the C3S reanalysis and seasonal forecast portfolio, with a focus on land-atmosphere coupling. It will support the evolution of C3S by improving the C3S climate reanalysis and seasonal prediction systems and products towards enhanced integrity and coherence of the C3S Earth system Essential Climate Variables. 


CONCERTO: Improved CarbOn cycle represeNtation through multi-sCale models and Earth obseRvation for Terrestrial ecOsystems

Terrestrial ecosystems are key to the functioning of the global carbon cycle and play a fundamental role in mitigating climate change. According to the Global Carbon Budget, about 30% of all the carbon dioxide (CO₂) emitted in the atmosphere is removed by vegetation uptake through photosynthesis and accumulation of biomass (so called CO2 sinks on land). Land use change, nutrient limitations, and extreme events (e.g. droughts, fires and heat waves) may limit this potential to sequester carbon. Identifying processes that might destabilise net land carbon uptake is of paramount importance for understanding and managing the global carbon cycle. CONCERTO aims to improve: the current understanding of the terrestrial carbon cycle by adding land processes that are not included yet or not fully developed in Land Surface Models (LSMs); the representation of land change, land use and land management maps to improve the accuracy of carbon fluxes and stocks; the description of impacts on the carbon cycle of extreme events such as droughts, heatwaves and fires, using tools such as state-of-the-art land surface models (LSMs) embedded into Earth system models (EMSs); the integration of LSM improvements in offline global simulations (driven by re-analyses) and in coupled ESMs.


COST Action CA23108: Seasonal-to-decadal climate predictability in the Mediterranean: process understanding and services

Climate forecasting has enormous potential influence in different socio-economic sectors, such as agriculture, health, water management, and energy. Actionable climate information is particularly relevant at seasonal-to-decadal timescales, where predictability is linked to slow fluctuations of the system such as those in the ocean, sea-ice and land-surface, thus bridging weather/sub-seasonal predictions (mainly relying on atmospheric initial condition) with future projections (mainly based on atmospheric radiative forcing). Seasonal-to-decadal climate forecasting has progressed considerably in recent years, but prediction skill over the Mediterranean is still limited. Better understanding the drivers of regional climate anomalies as well as exploring untapped sources of predictability constitute a much-needed and timely effort.


CRIceS – Climate relevant interactions and feedbacks: the key role of sea ice and snow in the polar and global climate system

The Arctic and Antarctic regions are experiencing rapid and unprecedented changes due to polar and global climate change, clearly caused by anthropogenic activities. 21st century projections show substantial decrease of sea ice in both Arctic and Antarctic, which are expected to impact people in the Arctic and also society beyond polar regions. CRiceS aims to investigate how rapid sea ice decline is interlinked with physical and chemical changes in the polar oceans and atmosphere, and to fully understand the causes and consequences of this polar transition. CRiceS will quantify the controlling chemical, biogeochemical, and physical interactions within the coupled ocean-ice/snow-atmosphere system through comprehensive analysis of new and emerging in-situ and satellite observations, and will improve numerical descriptions of sea ice dynamics/energy exchange, aerosols, clouds and radiation, biogeochemical exchanges. This improved understanding allows for improved quantification of feedback mechanisms and teleconnections within the Earth system.


EDITO-Model Lab, Underlying models for the European DIgital Twin Ocean – EDITO-Model Lab

EDITO-Model Lab will prepare the next generation of ocean models, complementary to Copernicus Marine Service to be integrated into the EU public infrastructure of the European Digital Twin Ocean that will ensure access to required input and validation data (from EMODnet, EuroGOOS, ECMWF, Copernicus Services and Sentinels satellite observations) and to high performance and distributed computing facilities (from EuroHPC for High Performance Computing and other cloud computing resources) and that will be consolidated under developments of Destination Earth (DestinE). 


ENMASSE: Enhancing NEMO for Marine Applications and Services

The Enhancing NEMO for Marine Applications and Services (ENMASSE) project represents a pivotal initiative aimed at advancing the capabilities of the NEMO (Nucleus for European Modelling of the Ocean) modelling platform. This enhancement is designed to address specific scientific and operational requirements set by the Copernicus Marine Service (CMS) program for the development and delivery of more precise and sophisticated ocean modelling products. These products are intended to support a wide range of applications, including marine safety, climate prediction, and ecosystem monitoring, ultimately contributing to informed decision-making and sustainable ocean management.


ESA CMUG: Climate Modelling Users Group

ESA has established the Climate Modelling User Group (CMUG) to place a climate system perspective at the centre of its Climate Change Initiative (CCI) programme, and to provide a dedicated forum through which the Earth observation data community and the climate modelling and reanalysis community can work closely together. CMUG will work with the Essential Climate Variable CCI projects to achieve this goal.


ESiWACE3 – Center of excellence for weather and climate phase 3

Extreme weather events and climate change are two of the main threats for society of the 21st century. Extreme weather events caused over 500 thousand casualties and over 2 trillion USD economic damages in the past 20 years. A failure of climate change mitigation and adaptation targets is ranked among the leading threats to global society. At the 2015 Paris Climate Conference, leaders from 194 countries of the world unanimously acknowledged the serious threat posed by anthropogenic emissions of greenhouse gases. Society must now become resilient to changes in climate over coming decades, which requires making quantitative estimates for future changes of weather patterns and climate extremes. This includes exceptional weather events such as violent windstorms and flash floods, but also persistent anomalies in planetary-scale circulation patterns, which lead to pervasive flooding in some regions and seasons, and long-lived drought and extremes of heat in others. Numerical models of the Earth system represent the most important tool to anticipate and assess these kinds of threats. One of the main factors that is limiting the skill of these models is limited resolution, and resolution, in turn, is limited by computational power that can be leveraged by these models. The first two phases of the ESiWACE Centre of Excellence (COE) have pushed the resolution of global Earth system models to unprecedented levels. This includes the first global atmosphere models that were able to run at ~1 km resolution in the first phase of ESiWACE and coupled atmosphere/ocean models that were able to


GoNEXUS – Innovative tools and solutions for governing the water-energy-food-ecosystems NEXUS under global change

GoNEXUS aims to develop a framework for designing and assessing innovative solutions for an efficient and sustainable coordinated governance of the water-energy-food-ecosystems (WEFE) nexus. Solutions will combine policy changes and soft path options with technical and infrastructure measures for a more resilient future. To achieve this objective, the project will build a powerful model toolbox and creative participatory Nexus Dialogues. The model toolbox will include forefront global/continental and river basin models, innovatively establishing a functional link between them. At global and continental scales, the toolbox will include the individual WEFE element models CAPRI (food, agri-environment), LISFLOOD-EPIC and PCR-GLOBWB (water), PRIMES and PROMETHEUS (energy), GLOBIO (environment), and GEM-E3 (macroeconomics), some of them used in EU policies. River basin models will include nested strategic WEFE management models (including behavioral modelling) and hydrological simulation models to expand the analysis of resilience at basin scale, including impacts on ecosystems. Nexus Dialogues will co- design scenarios, models, and solutions for a joint governance of the WEFE nexus. The solutions will be evaluated using the model toolbox through a set of novel nexus indicators and criteria (based on relevant SDGs metrics) to assess trade-offs between water status, and food and energy security. GoNEXUS will be applied at global and EU levels and to six river basins representing different features and WEFE challenges in Europe (Danube, Como, Jucar, Tagus-Segura) and Africa (Zambezi, Senegal). The innovative combination of models and Nexus Dialogues will provide more accurate evaluations of future scenarios, enabling knowledge sharing and brokerage, and improving WEFE


interTwin – An interdisciplinary Digital Twin Engine for Science

interTwin co-designs and implements the prototype of an interdisciplinary Digital Twin Engine (DTE), an open-source platform that provides generic and tailored software components for modelling and simulation to integrate application-specific Digital Twins (DTs). Its specifications and implementation are based on a co-designed conceptual model – the DTE blueprint architecture – guided by the principles of open standards and interoperability. The ambition is to develop a common approach to the implementation of DTs that is applicable across the whole spectrum of scientific disciplines and beyond to facilitate developments and collaboration.  Co-design involves DT use cases for High energy physics, Radio astronomy, Astroparticle physics, Climate research, and Environmental monitoring, whose complex requirements are expected to significantly advance the state of the art of modelling and simulation using heterogeneous distributed digital infrastructures, advanced workflow composition, real-time data management and processing, quality and uncertainty tracing of models, data fusion and analytics. As a result, a consolidation of software technologies supporting research will emerge.  The validation of the technology with multiple infrastructure facilities will boost the accessibility of users to technological capacity and the support of AI uptake in research. interTwin builds on the capacities of experts from pan-European research infrastructures and the long tail of science, an Open-Source Community of technology providers that will deliver TRL 6/7 capabilities to implement the interdisciplinary DTE, experts of the European Centre of Excellence in Exascale Computing, and infrastructure providers from the EGI Federation, PRACE and EuroHPC supporting data and compute intensive science. interTwin key exploitable results will


IRIDE Lot 1

The IRIDE program is an innovative project undertaken by the Italian government in collaboration with the European Space Agency (ESA) to leverage resources from the National Recovery and Resilience Plan (PNRR). Phase 2 of IRIDE Lot 1 started in October 2024 following the successful implementation of the IRIDE Precursor Phase. The main purpose of the project is to deliver an operational portfolio of geospatial services and develop digital tools for End and Pilot users within the Thematic Services S1-Coastal and Marine Monitoring, S2- Air Quality, S5- Hydro-Meteorological-Climate, S6- WaterManagement. The operational services allow mapping, monitoring and forecasting of various characteristics of coastal areas (including geomorphological, land use, flooding, habitats etc.) as well as operational model validation, operational air quality monitoring and forecast, pollutant emissions monitoring and assessment, re-analysis of air quality at national scale, hydro-meterological mapping and monitoring atmospheric structure, greenhouse gases and others essential climate variables monitoring, lightening monitoring, flood forecasting and sediment management, etc.


LIQUIDICE: LinkIng and QUantifying the Impacts of climate change on inlanD ICE, snow cover, and permafrost on water resources and society in vulnerable regions

Recognizing the central role played by snow, ice and permafrost in the global climate system, the LIQUIDICE project joins expert cryospheric observers and modelers to: i) comprehensively re-assess the past and future century-plus of climate-induced high impact changes to the Greenland ice sheet and climate vulnerable locations across the Alps, Norway, High Mountain Asia (HMA) and Svalbard, including permafrost areas and their ecosystems; ii) develop new, expanded and harmonized data from satellite Earth Observation (EO) and ground stations; iii) use these data to improve and test a hierarchy of ice sheet and glacier models with Earth System Models (ESMs); iv) through these steps, yield new process understanding, and ultimately v) inform water resource, hydropower, and socio-economic strategies through clear and transparent communication of results and uncertainties. The project’s strengths lie in new multidisciplinary collaborations across 18 research institutions, from eight European countries (Poland, Italy, Denmark, Germany, Spain, Sweden, Norway, United Kingdom) and India, encompassing expertise in field observations, satellite EO techniques, ESM development and application, and socio-economic analysis. Key deliverables include a) FAIR-principled new multi-decade data catalogues of multi-regional snow water equivalent and a 44-year EO-derived albedo record; b) assessments of impact of model resolution and degree of coupling on results; c) refined past and future glacier, ice cap and Greenland ice sheet freshwater fluxes to oceans and global sea level rise with indirect constraint on Antarctica; d) new hydrological simulations for HMA; e) a new framework for a Water Discharge Impact Assessments; f) socio-economic integrated risk and adaptation assessments;


MELTED – MachinE Learning for arcTic ice prEDiction

The Arctic region plays a vital role in the global climate system, it is strongly affected by climate change, and in turn one of its drivers. The Arctic is warming four times faster than the global average, transitioning into an entirely different climate than a few decades ago (Legg, 2021). Satellite data reveal that the September sea ice extent declined by ~13% per decade since 1979 causing major changes in the oceanic heat flux. Changes in the Arctic sea ice impact extreme weather and climate events beyond the Arctic region, favouring extreme Northern Hemisphere winters (Kretschmer et al., 2016) or wetter European summers (Screen, 2013). Arctic changes have a substantial socio-economical relevance (e.g. indigenous communities, shipping and tourism, fisheries), as well as a geopolitical dimension, given possible shipping routes and natural resources exploitation. Understanding the causes of these changes is thus of paramount importance yet substantial gaps still exist. Moreover, numerous studies have demonstrated the limitations of current-generation climate models in accurately representing essential aspects of polar climates, such as Arctic sea ice loss (Wang et al., 2016) or water mass changes (Ilicak et al., 2016).


NECCTON- New Copernicus capability for trophic ocean networks


The ocean’s biodiversity supports the livelihoods of over three billion people, providing vital services, including food and nutrient cycling. However marine policy and resource management do not yet consider the latest scientific advances, even when the state-of- the-art operational models of the European Copernicus Marine Service (CMEMS) are used. The project’s objective is to enable CMEMS to deliver novel products that inform marine biodiversity conservation and food resources management, by fusing new data into innovative ecosystem models that integrate biological and abiotic components, habitats, and stressors of marine ecosystems. NECCTON will inter-link new models in the CMEMS systems, thus building novel capacities to simulate higher-trophic-levels, benthic habitats, pollutants, and deliver projections of climate change impacts. We will develop and exploit new data-processing chains, supporting CMEMS’ use of novel ecosystem observations, including new hyperspectral data from satellites, as well as available acoustic, pollution and omics data. We will fuse these new data and models by using innovative machine-learning algorithms to improve models and data assimilation methods. These developments will be applied in thirteen case studies, co-designed with fisheries and conservation managers as part of our pathway-to-impact, resulting in the demonstration of Technological Readiness Level 6 of NECCTON products. The project objectives will be achieved by a team of twenty-three world-class organizations with track records for all the key project components. It includes the CMEMS Entrusted Entity and core developers, who will promote the final uptake of NECCTON by CMEMS. On project completion, NECCTON will provide CMEMS with the scientific and technical


NEXOGENESIS – Facilitating the next generation of effective and intelligent water-related policies utilising artificial intelligence and reinforcement learning to assess the water-energy-food ecosystem (WEFE) nexus

Water, energy, food, and ecosystems (WEFE) are interconnected, comprising a coherent system (nexus) dominated by complexity and modulated by climatic and socio-economic drivers. Resource constraints, and their interconnectedness could hamper economic development, including optimal trade, market and policy solutions. NEXOGENESIS offers a coherent WEFE nexus framework for the assessment of potential impact pathways of implementing new policy objectives (WFD, RED, CAP, SDGs, Paris Agreement) in the nexus, including: (i) biophysical and socio-economic modelling; (ii) stakeholder engagement together with; (iii) validation of NEXOGENESIS outputs and; (iv) use of the latest artificial intelligence techniques.


ObsSea4Clim: Ocean observations and indicators for climate and assessments

ObsSea4Clim brings together key European actors within ocean observing science, climate assessment, Earth System modelling, data sharing and standards, with users of oceanographic products and services to deliver an improved observation framework based on Essential Ocean & Climate Variables (EOV/ECVs).


OceanICU – Ocean-ICU Improving Carbon Understanding


The Ocean plays a crucial role in the global C cycle, taking up approximately 25% of the CO2 we emit to the atmosphere, and thus slowing the rate of climate change. The future trajectory of this sink will affect the timing and intensity of the modifications to human processes that we need to undertake in order to stabilise atmospheric CO2 at 450ppm. Our ability to measure and model this sink is limited (evidenced by significant discrepancies between measured and modelled C uptake) with the current frontier area of research being a suite of biological processes related to higher trophic level behaviour within the so called biological C pump. This involvement of higher organisms suggests that human activities (fishing, energy and mineral extraction) has the capacity to affect the ocean C sink however we lack the ability to quantitatively link direct human pressures and ocean C storage. Ocean ICU will measure these key processes and evaluate their overall significance, transferring those that are important into models that inform the IPCC process and in this way contribute to resolving the observed model data mismatch of Ocean C sink estimates. We will use the fundamental knowledge we acquire around biological systems to evaluate the ability of human interventions in the ocean to alter the carbon cycle and produce management tools that allow the tension between resource extraction and C storage to be addressed. This component will involve extensive dialogue with end users and stakeholders and lead to a Decision Support Tool that will


ORACS: Ocean Reanalysis Algorithms for Climate Studies

This contract will develop improved algorithms to produce long term ocean reanalyses in the presence of varying observational networks. It will be focused on consistency of climate relevant metrics across 2 periods of increasing observational coverage, in the 1950’s and in the 1980s-90s as altimeter observations become available. The role of different atmospheric forcing and riverine inputs will be tested and the ensemble error covariance approaches suitable for both sparse will be developed and more dense observing networks. It will also address the detection of bias in the assimilated results and make recommendations on how best to treat bias under varying observational conditions. Finally new post-processed smoothing methods to more fully use observations and to spread information back to influence more sparsely observed periods will be applied. A set of Recommendations will be made to CMEMS to aid in the production of a climate- consistent long period ocean reanalysis in the final report.


PIISA: Piloting Innovative Insurance Solutions for Adaptation

PIISA is a project funded by HORIZON Europe RIA (Research and Innovation Action) aiming to develop and deploy a range of insurance innovations that incite households and firms to adapt proactively and sufficiently for their own sake and their neighborhood’s sake. PIISA incites public authorities to set up adaptation and create adaptation promoting conditions. PIISA co-develops climate resilient insurance portfolios and develops solutions for sharing losses and climate risk data.

Start typing and press Enter to search

Shopping Cart