Research projects

Filtering by: Institute for Earth System Predictions

ACQUAOUNT – Adapting to Climate change by QUantifying optimal Allocation of water resOUrces and socio-ecoNomic inTerlinkages

Agriculture is by far the most water demanding sector in the Mediterranean and a sustainable use of water, combined with economic growth, cannot be achieved without improving irrigation efficiency and water productivity. The current heavy depletion of water sources is leading to water scarcity and degradation, deterioration of ecosystem services, conflicts with domestic and industrial uses and, in general, it poses limitations to economic growth. These trends will be exacerbated by CC. The ACQUAOUNT project aims to improve IWRM and sustainable irrigation through the deployment of innovative tools, smart water services and solutions, for public and private use, while contributing to climate resilience.


AGRITECH – National Research Centre for Agricultural Technologies

The National Center for the Development of New Technologies in Agriculture (Agritech) is based on the use of enabling technologies for the sustainable development of agri-food production, with the aim of promoting adaptation to climate change, reducing the environmental impact in the agrifood sector, the development of marginal areas, and to guarantee safety, traceability and security of the supply chains. The project is worth around 350 million euros, of which 320 million to be paid by the PNRR and involves 28 universities, 5 research centers, and 18 companies. The Center is structured in Hub&Spoke, with the University of Naples Federico II responsible for the national hub and 9 different spokes in the thematic areas: Plant, animal and microbial genetic resources and adaptation to climatic changes Crop Health: a multidisciplinary system approach to reduce the use of agrochemicals Enabling technologies and sustainable strategies for the smart management of agricultural systems and their environmental impact Multifunctional and resilient agriculture and forestry systems for the mitigation of climate change risks Sustainable productivity and mitigation of environmental impact in livestock systems Management models to promote sustainability and resilience of agricultural systems Integrated models for the development of marginal areas to promote multifunctional production systems enhancing agroecological and socio-economic sustainability New models of circular economy in agriculture through waste valorization and recycling New technologies and methodologies for traceability, quality, safety, measurements and certifications to enhance the value and protect the typical traits in agri-food chains.


ALIENA: ALIgning Efforts to control Non-indigenous species in the Adriatic sea

Non-indigenous species (NIS) pose a significant threat to biodiversity and ecosystems globally, ranking as the second most common cause of species extinctions. Particularly in the Adriatic Sea, a hub for fishing, tourism and maritime traffic, the introduction of NIS has the potential to exacerbate ecological and economic impacts. ALIENA aims at creating a shared knowledge base and collaborative monitoring system to protect biodiversity from NIS in the Adriatic Sea. Through joint monitoring and modeling efforts focused on these species, the project seeks to develop early warning solutions essential for effective marine management, biodiversity conservation, and public health protection. Additionally, it aims to improve shared protocols for NIS detection, monitoring, and management, while also increasing stakeholders’ awareness of NIS issues.


AtlantECO – Atlantic ECOsystems assessment, forecasting & sustainability

The EU-funded AtlantECO project aims to develop and apply a novel, unifying framework that provides knowledge-based resources for a better understanding and management of the Atlantic Ocean and its ecosystem services. AtlantECO will engage with citizens and actors from the industry and policy sectors in order to stimulate responsible behaviour and Blue Growth. The project focuses on three pillars of research: microbiomes, plastic and the plastisphere, and seascape connectivity. In pursuit of this goal, AtlantECO is bringing together experts and pioneers from Europe, South America and South Africa with the relevant resources, knowledge and experience.


Blue-Cloud 2026 | A federated European FAIR and Open Research Ecosystem for oceans, seas, coastal and inland waters

The Blue-Cloud 2026 project builds on the existing pilot Blue-Cloud project (Oct 2019 – Sep 2022) and it evolves its pilot Blue-Cloud ecosystem into a federated European Ecosystem to deliver FAIR and Open Data and analytical services instrumental for deepening research of oceans, the EU sea, coastal and inland waters. It develops a thematic marine extension to European Open Science Cloud (EOSC) for accessible web-based science, serving the needs of the EU Blue Economy, Marine Environment and Marine Knowledge agendas. 


Blue4All – Blueprint demonstration for co-created effective, efficient and resilient networks of MPAs

There is an urgent need to strengthen marine conservation and restoration globally. One of the key measures to achieve this is to ensure that enough sea area is protected in effective ways. This requires designation of Marine Protected Areas (MPAs) in different marine habitats. According to the EU Biodiversity Strategy 2030, 30% of Europe’s sea and land areas should be under strict protection. 


C3S2_413 – Enhanced Operational Windstorm Service

This contract presents a continuation, a temporal extension, and an enhancement of the current C3S Windstorm Service. Leveraging the current Service structure, contractorss will temporally extend the detection and tracking of Pan-European potentially harmful windstorms associated with extratropical cyclones along the whole available period provided by the ECMWF ERA5 reanalysis dataset (1940-present).


CERISE: CopERnIcus climate change Service Evolution

The Copernicus Climate Change Service Evolution (CERISE) project aims to enhance the quality of the C3S reanalysis and seasonal forecast portfolio, with a focus on land-atmosphere coupling. It will support the evolution of C3S by improving the C3S climate reanalysis and seasonal prediction systems and products towards enhanced integrity and coherence of the C3S Earth system Essential Climate Variables. 


Climateurope2 – Supporting and standardizing climate services in Europe and beyond

Climateurope2 aims to develop future equitable and quality-assured climate services to all sectors of society by: a) developing standardisation procedures for climate services; b) Supporting an equitable European climate services community; and c) Enhancing the uptake of quality-assured climate services to support adaptation and mitigation to climate change and variability. The project will identify the support and standardisation needs of climate services, including criteria for certification and labelling, as well as the user-driven criteria needed to support climate action. This information will be used to propose a taxonomy of climate services, suggest community-based good practices and guidelines, and propose standards where possible. A large variety of activities to support the communities involved in European climate services will also be organised.


CLINT – CLImate INTelligence: Extreme events detection, attribution and adaptation design using machine learning

Weather and climate extremes pose challenges for adaptation and mitigation policies as well as disaster risk management, emphasizing the value of Climate Services in supporting strategic decision-making. Today Climate Services can benefit from an unprecedented availability of data, in particular from the Copernicus Climate Change Service, and from recent advances in Artificial Intelligence (AI) to exploit the full potential of these data. The main objective of CLINT is the development of an AI framework composed of Machine Learning (ML) techniques and algorithms to process big climate datasets for improving Climate Science in the detection, causation and attribution of Extreme Events (EE), including tropical cyclones, heatwaves and warm nights, and extreme droughts, along with compound events and concurrent extremes. Specifically, the framework will support (1) the detection of spatial and temporal patterns, and evolutions of climatological fields associated with Extreme Events, (2) the validation of the physically based nature of causality discovered by ML algorithms, and (3) the attribution of past and future Extreme Events to emissions of greenhouse gases and other anthropogenic forcing. The framework will also cover the quantification of the Extreme Events impacts on a variety of socio-economic sectors under historical, forecasted and projected climate conditions by developing innovative and sectorial AI-enhanced Climate Services. These will be demonstrated across different spatial scales, from the pan European scale to support EU policies addressing the Water-Energy-Food Nexus to the local scale in three types of Climate Change Hotspots. Finally, these services will be operationalized into Web Processing Services, according to


CONCEPTU MARIS – CONservation of CEtaceans and Pelagic sea TUrtles in Med: Managing Actions for their Recovery In Sustainability

The Mediterranean Sea is undergoing severe changes driven by increasing anthropogenic pressures. CEtaceans and Pelagic sea TUrtles (CEPTU hereafter) are among the most important charismatic species in the Mediterranean Sea, and crucial bioindicators of marine health conditions. However, there is a data deficiency for most taxa, which is mainly due to the fact that CEPTU species spend the majority of their life in remote offshore areas that are the most difficult to monitor because of their extent. With their offshore movements, they are exposed to multiple anthropogenic stressors, such as maritime traffic causing pollution, underwater noise, disturbance and marine litter exposing the species to a higher risk of entanglement, ingestion or toxicological effects. Entanglement in fishing-related gears also contributes to increased risks linked to the pressure of fishing in pelagic areas.


Copernicus Marine Service BS MFC -Black Sea Monitoring and Forecasting Centre of the Copernicus Marine Service

Copernicus is the European Union’s Earth observation programme which offers information services that draw from satellite Earth Observation and in-situ (non-space) data and is managed by the European Commission. The Copernicus Marine Service provides regular and systematic reference information on the physical and biogeochemical state, variability and dynamics of the ocean and marine ecosystems for the global ocean and the European regional seas. It has been implemented by Mercator Ocean International (MOI) since 2015. It enables marine policy implementation, supports Blue Growth and scientific innovation. Copernicus Marine Service is an open and free of charge service, compliant with EU regulations such as INSPIRE and the Delegated Regulation on Copernicus data and information policy.


Copernicus Marine Service MED MFC – Mediterranean Sea Monitoring and Forecasting Centre of the Copernicus Marine Service

Copernicus is the European Union’s Earth observation programme which offers information services that draw from satellite Earth Observation and in-situ (non-space) data and is managed by the European Commission. The Copernicus Marine Service provides regular and systematic reference information on the physical and biogeochemical state, variability and dynamics of the ocean and marine ecosystems for the global ocean and the European regional seas. It has been implemented by Mercator Ocean International (MOI) since 2015. It enables marine policy implementation, supports Blue Growth and scientific innovation. Copernicus Marine Service is an open and free of charge service, compliant with EU regulations such as INSPIRE and the Delegated Regulation on Copernicus data and information policy.


CRIceS – Climate relevant interactions and feedbacks: the key role of sea ice and snow in the polar and global climate system

The Arctic and Antarctic regions are experiencing rapid and unprecedented changes due to polar and global climate change, clearly caused by anthropogenic activities. 21st century projections show substantial decrease of sea ice in both Arctic and Antarctic, which are expected to impact people in the Arctic and also society beyond polar regions. CRiceS aims to investigate how rapid sea ice decline is interlinked with physical and chemical changes in the polar oceans and atmosphere, and to fully understand the causes and consequences of this polar transition. CRiceS will quantify the controlling chemical, biogeochemical, and physical interactions within the coupled ocean-ice/snow-atmosphere system through comprehensive analysis of new and emerging in-situ and satellite observations, and will improve numerical descriptions of sea ice dynamics/energy exchange, aerosols, clouds and radiation, biogeochemical exchanges. This improved understanding allows for improved quantification of feedback mechanisms and teleconnections within the Earth system.


EDITO-Model Lab, Underlying models for the European DIgital Twin Ocean – EDITO-Model Lab

EDITO-Model Lab will prepare the next generation of ocean models, complementary to Copernicus Marine Service to be integrated into the EU public infrastructure of the European Digital Twin Ocean that will ensure access to required input and validation data (from EMODnet, EuroGOOS, ECMWF, Copernicus Services and Sentinels satellite observations) and to high performance and distributed computing facilities (from EuroHPC for High Performance Computing and other cloud computing resources) and that will be consolidated under developments of Destination Earth (DestinE). 


EOSC Beyond: advancing innovation and collaboration for research

EOSC Beyond is a 36-month project coordinated by the EGI Foundation with the ambition to support the growth of the European Open Science Cloud (EOSC) in terms of integrated providers and active users by providing new EOSC core technical solutions that allow developers of scientific application environments to easily compose a diverse portfolio of EOSC Resources offering them as integrated capabilities to researchers.


ESA CMUG: Climate Modelling Users Group

ESA has established the Climate Modelling User Group (CMUG) to place a climate system perspective at the centre of its Climate Change Initiative (CCI) programme, and to provide a dedicated forum through which the Earth observation data community and the climate modelling and reanalysis community can work closely together. CMUG will work with the Essential Climate Variable CCI projects to achieve this goal.


ESiWACE3 – Center of excellence for weather and climate phase 3

Extreme weather events and climate change are two of the main threats for society of the 21st century. Extreme weather events caused over 500 thousand casualties and over 2 trillion USD economic damages in the past 20 years. A failure of climate change mitigation and adaptation targets is ranked among the leading threats to global society. At the 2015 Paris Climate Conference, leaders from 194 countries of the world unanimously acknowledged the serious threat posed by anthropogenic emissions of greenhouse gases. Society must now become resilient to changes in climate over coming decades, which requires making quantitative estimates for future changes of weather patterns and climate extremes. This includes exceptional weather events such as violent windstorms and flash floods, but also persistent anomalies in planetary-scale circulation patterns, which lead to pervasive flooding in some regions and seasons, and long-lived drought and extremes of heat in others. Numerical models of the Earth system represent the most important tool to anticipate and assess these kinds of threats. One of the main factors that is limiting the skill of these models is limited resolution, and resolution, in turn, is limited by computational power that can be leveraged by these models. The first two phases of the ESiWACE Centre of Excellence (COE) have pushed the resolution of global Earth system models to unprecedented levels. This includes the first global atmosphere models that were able to run at ~1 km resolution in the first phase of ESiWACE and coupled atmosphere/ocean models that were able to


EUCRA – The European Climate Risk Assessment

This contract will aim at carrying out the European Climate Risk Assessment (EUCRA). EUCRA will address the climate risks in Europe and will establish a European baseline of climate risks on which countries can build on their national assessments. 


FIUMICINO Project: Morphodynamic and Sediment Transport, Hydrodynamic, and Ecological Characterization of the Physiographic Unit from Capo Linaro to Capo d’Anzio

The project fits into a broad system of observation, monitoring, and analysis of the marine environment that addresses the need to harmonize the protection of marine ecosystems with the proper management and development of coastal area uses. The response of natural systems to variations generated by specific coastal interventions overlaps with the variations induced by climate trends and territorial changes (land use, riverbed interventions, industries) occurring in the relevant basins, generating an overlap of effects that modulate the evolution of the receiving sea area and coasts on different spatial and temporal scales. The study area is dominated by the presence of the Tiber River, which, being the main watercourse of central Italy, significantly influences the sediment balance in the area and the distribution of biocoenoses. The same area will be affected by a series of activities related to the construction of new port infrastructures. To analyze such a complex system and to separate as accurately as possible the variations induced by a project from the evolution of the system itself, it is therefore essential to know the physical and dynamic characteristics of the study area and the current environmental state, through an in-depth analysis of the main impacts and pressures affecting the entire area and its habitats. This project aims to study the physical, chemical, and biological characteristics of the area between Capo Linaro and Capo d’Anzio through a multidisciplinary study that involves the integration of observational data and numerical modeling and to support the development of the works and


Start typing and press Enter to search

Shopping Cart